If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-24y-80=0
a = 1; b = -24; c = -80;
Δ = b2-4ac
Δ = -242-4·1·(-80)
Δ = 896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{896}=\sqrt{64*14}=\sqrt{64}*\sqrt{14}=8\sqrt{14}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-8\sqrt{14}}{2*1}=\frac{24-8\sqrt{14}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+8\sqrt{14}}{2*1}=\frac{24+8\sqrt{14}}{2} $
| x/2+4x=x | | -1/6r-3=2 | | 1/3x+4=-19 | | -15-b=-44 | | 13-3+n=19 | | −4x=88 | | x/5+4x+3(x-5)=x | | 40,000x+1,000=60,000 | | 3x/47+37=5x+62 | | 3x=−33 | | 15x-15=13+3 | | 1/2(12-2x)-4=14-10x | | m+25=0 | | 5x-9=3x-45 | | -3=8x+16 | | 4(w−16)=8 | | 16t2=400 | | 6x-(3x-11)=36 | | −3x=45 | | 8.5c=6.2 | | 9x-6=9x−6=4x+19 | | 24-(6y+5y)=6 | | 18+32=x | | 2x+4=6x+40 | | 2/5b=17/8 | | 5-2x=3-2x=-2 | | 0.5x+10+1.5x=x+1 | | 0=w^2+1.5w-175 | | 3x+26=10-5x | | 199=-v+246 | | 7y+13=6y+7 | | 6n²=72n |